>
[ =
+

(8]

RV

~—

N
QI\)
%[

Longitud de la elipse
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Sea =+ y_2 =1 la elipse. Entonces
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Aproximaciones.:
(1) Formula de Ramanujan

L=7|3(a+b)-\[3a+b)(a+3b)]|

(2) Férmula de Ramanujan I1

3(a—bj2
Lz;r(a+b) 1+ at+b
10+ /4—3("_[’)
a+b
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(3) Formula de Ramanujan II-Cantrel: H = ( a- zj
a+

[ 3H 4 14
L=r(a+b)|1+—— +| 2" |g"
(a )_ 10J4-3H (n 11) }

(4) Formula de Gauss-Krammer
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Area de la elipse

. . . X =acost .
Las ecuaciones paramétricas de la elipse son: { 5 , donde x e [—a,a] y, COMoO consecuencia,
y=bsent

t€[7,0]. Asi, el area de la elipse es:
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A= 2.[:(b sent)(—asent)dr = —2abI: sen’ tdt = 2ab.|‘0ﬂ sen’ tdt = 2ab

Dicha féormula se puede obtener también mediante integracion doble:
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