
I.E.S. “Ramón Giraldo” 

 

1 

ipri                                                                                                Demostraciones por reducción al absurdo 

Demostraciones por reducción al absurdo 
 

Se basa en la siguiente equivalencia lógica: 

   absurdop q p q     

 

 

1) Irracionalidad de raíz de 2   

 

Supongamos, por reducción al absurdo, que 2 . Entonces,  

2  con ,  primos entre sí y 0
p

p q q
q

=    

y elevando al cuadrado: 
2

2 2

2
2 2

p
q p

q
=  =  

La última igualdad nos dice que 
2p es múltiplo de 2 y, por tanto, 2  con p k k=  . Sustituyendo, 

resulta: 

( )
22 2 22 2 2q k q k=  =  

Es decir, 
2q  es múltiplo de 2, y como consecuencia, q  también es múltiplo de 2, lo que contradice 

el hecho de que  y p q  sean primos entre sí. 

 

2) Infinitud de los números primos   

 

Euclides, proposición 20 del libro IX de los Elementos1. 

Supongamos, por reducción al absurdo, que solo hay un número finito de primos 1 2, ,..., np p p  y los 

ordenamos 1 2 ... np p p   . Consideramos el número natural  1 2 ... 1nN p p p=    + , que puede ser 

primo o no. 

Si es primo, tendríamos un número primo que no está en la lista, lo que constituye una contradicción. 

Si N  no es primo, entonces tiene que ser divisible por algún número primo. Entonces, para cada 

primo kp  que divida a N , se tiene que 1k kN c p= +  con 1kc   y , como consecuencia, el resto de 

dividir N  entre kp  es siempre 1. Por tanto, este primo kp  que divide a N , no puede ser ninguno de 

la lista de los primos iniciales, lo que también es una contradicción.  

 

3) 2    ,  3n n n     

 

Supongamos, por reducción al absurdo, que 2n  . Entonces, ( ), , 0,  m.c.d. , 1p q q p q   =  

tales que 2n p

q
= . Elevando a n  ambos miembros,  

2
n

n

p

q
=  

y, por tanto,  

 
1 Enunciado original (Euclides): Hay más números primos que cualquier cantidad propuesta de números 

primos. 
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2 n nq p=  

que se puede reescribir como  
n n nq q p+ =  

lo que contradice el último teorema de Fermat. Así, 2n  . 

 

4) 2 3 2Si  y  son números enteros tales que ,  entonces  es parm n n n n m m n+ + = +   

 

Supongamos, por reducción al absurdo, que n  es impar. Entonces, 
2 3 y n n  son ambos impares, de 

donde se deduce que 
2 3n n n+ +  es impar, ya que es la suma de tres números impares, y como 

consecuencia 
2m m+  es impar (ya que 

2 3 2n n n m m+ + = + ). 

Sin embargo, 
2m m+  es siempre par, ya que ( )2 1m m m m+ = + y necesariamente alguno de los 

números  o 1m m+  es par, y por tanto, hemos llegado a una contradicción. 

 

5) lim  si 1n

n
x x

→
= +    

 

Para demostrar que la sucesión  nx , que es creciente, no está acotada, vamos a suponer, por 

reducción al absurdo, que  nx  está acotada. Así, 

   sup :n nx x → =  

y, por tanto,  
1    nx n+     

lo que implica que  

   nx n
x


     

y esto, contradice el hecho de que   sea el supremo. 

 

6) log 2   

 

Supongamos que ( )log 2  con ,  y m.c.d. , 1
m

m n m n
n

=  = . Entonces, tomando exponenciales de 

base e , se tiene que 2
m

ne=  y, por tanto, que 2
m

ne = . Ahora bien, eso quiere decir que e  es solución 

de la ecuación polinómica 2 0m nx − = , lo que es una contradicción, ya que sabemos que el número 

e  es trascendente y, por tanto, no es solución de ninguna ecuación polinómica con coeficientes 

enteros. 

 

7) Sean ,  tales que a b  ,  que cumplan que . Entonces, logm n

bm n a b a =    

 

Supongamos que ( )log  con ,  y tales que . . . , 1b

p
a p q m c d p q

q
=  = . Entonces,  

p

q p p qqb a b a b a=  =  =  

lo que contradice la hipótesis del enunciado. 
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8) Sea  un número primo. Entonces, p p    

 

Supongamos que 
a

p
b

=  con ( ), , 0 y m.c.d. , 1a b b a b  = . Entonces, 

2
2 2

2
     [1]

a
p b p a

b
=  =  

esto es, 2a  es múltiplo de p  y, por tanto, a  también es múltiplo de p . 

Por el teorema fundamental de la Aritmética 1 ...  con n ia p p p=    primo, luego 
2 2 2

1 1 1... ... ...n n na p p p p p p=      =    

y como p  es un factor de 2a , supongamos que 
1p p= . Entonces 

2 2 2 2

2 ... na p p p=     

Ahora bien, hemos visto que a  es múltiplo de p , luego  con a kp k=   y sustituyendo en [1] 

( )
22 2 2 2 2 2b p kp b p k p b k p=  =  =  

Esto es, 2b  es múltiplo de p  y, por tanto, b  también es múltiplo de p  !!, ya que entonces p  sería 

un múltiplo común de a  y de b . 


