1. \[A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -2 \end{pmatrix} \]

a) \[A^{-1} \]

\[(A|I) = \begin{pmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & -2 & | & 0 & 1 & 0 \\ 0 & -1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \]

\[\xrightarrow{F_1 \leftrightarrow F_2} \begin{pmatrix} 1 & 0 & -2 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \]

\[\xrightarrow{F_2 + F_3} \begin{pmatrix} 1 & 0 & -2 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \]

\[\Rightarrow A^{-1} = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} \]

b) \[AX + I = BC \]

\[AX = BC - I \]

\[AAX = A^{-1} (BC - I) \]

\[X = A^{-1} (BC - I) \]

2. \[\begin{cases} x + z y + 3 z = 3 \\ x + 3 y + 2 z = 2 \\ -x + y + z = 1 \end{cases} \]

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \quad \tilde{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ -1 & 1 & 1 \end{pmatrix} \]

\[\begin{vmatrix} 1 & 2 & 3 \\ 4 & a & 2 \\ -1 & 1 & 1 \end{vmatrix} = 2 + a - 4 + a^2 - 2 - 2 = a^2 + 2a - 8 = 0 \Rightarrow a = \begin{cases} -4 \\ 2 \end{cases} \]
\[\begin{vmatrix} 1 & 2 & -4 & -4 \\ 1 & 4 & 2 & -4 \\ 1 & 1 & 1 & 1 \end{vmatrix} = -4 \quad \begin{vmatrix} 1 & 2 & -4 & -4 \\ 0 & 6 & 6 & 0 \\ 0 & 3 & -3 & -3 \end{vmatrix} \]

\[\begin{pmatrix} 1 & 2 & -4 & -4 \\ 0 & 6 & 6 & 0 \\ 0 & 0 & 0 & -6 \end{pmatrix} \Rightarrow \text{rango } \tilde{A} = 3 \quad \text{y rango } A = 2 \quad \text{ya que } \left| \begin{array}{c} 1 \\ 1 \\ -4 \end{array} \right| \neq 0 \]

\[\text{Si } A = 2 \quad \Rightarrow \text{rango } A = 2 = \text{rango } \tilde{A} = \text{rango } A \]

Discusión:

Si: \(A \neq \left\{ \begin{array}{c} 2 \\ \end{array} \right\} \), entonces \(\text{rango } A = 3 = \text{rango } \tilde{A} = \text{nº incógnitas} \) \(\Rightarrow \) (teorema de Rouché-Frobenius) S.C.D.

Si: \(A = -4 \quad \Rightarrow \text{rango } A = 2 < 3 = \text{rango } \tilde{A} \Rightarrow \) (teorema de Rouché-Frobenius) S.I.

Si: \(A = 2 \quad \Rightarrow \text{rango } A = 2 = \text{rango } \tilde{A} < 3 \Rightarrow \) (teorema de Rouché-Frobenius) S.C.I.

b) \[\begin{pmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ -1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix} \]

Llamamos \(z = \lambda \in \mathbb{R} \)

De [3]: \(y + \lambda = 1 \Rightarrow y = 1 - \lambda \)

Sustituyendo en [2]: \(x = 1 - (1 - \lambda) - \lambda = 0 \)

Soluciones: \((x, y, z) = (0, 1 - \lambda, \lambda) \) con \(\lambda \in \mathbb{R} \)

3) a) \[\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin(2x)} \right) = [\infty - \infty] = \lim_{x \to 0^+} \frac{\sin(2x) - x}{x \sin(2x)} = \left[\frac{0}{0} \right] = \]

\[= \lim_{x \to 0^+} \frac{\cos(2x) \cdot 2 - 1}{1 \cdot \sin(2x) + x \cdot \cos(2x) \cdot 2} = + \infty \]

\[\text{regla de L'Hôpital} \]
b) \(f(x) = \begin{cases} 2^{x-1} & x \leq 1 \\ x-2 & 1 < x < 2 \\ \ln(x-1) & x \geq 2 \end{cases} \)

Continuidad en \(x = 1 \): ¿Existe \(\lim_{x \to 1} f(x) = f(1) \)?

\[\lim_{x \to 1} f(x) = \left\{ \begin{array}{l} \lim_{x \to 1^-} 2^{x-1} = 2^0 = 1 \\ \lim_{x \to 1^+} (x-2) = -1 \end{array} \right\} \Rightarrow \lim_{x \to 1} f(x) \neq f(1) \Rightarrow \] \(f \) tiene un salto finito en \(x = 1 \).

Continuidad en \(x = 2 \): ¿Existe \(\lim_{x \to 2} f(x) = f(2) \)?

\[\lim_{x \to 2} f(x) = \left\{ \begin{array}{l} \lim_{x \to 2^-} (x-2) = 0 \\ \lim_{x \to 2^+} \ln(x-1) = \ln 1 = 0 \end{array} \right\} \Rightarrow \lim_{x \to 2} f(x) = 0 \] \(f(2) = \ln 1 = 0 \) \(\Rightarrow f(2) \) continua en \(x = 2 \).

(4)

Planteamiento: \(\begin{cases} x^2 y = 108 \\ S = x^2 + 4x y \end{cases} \)

Como \(x^2 y = 108 \) \(\Rightarrow y = \frac{108}{x^2} \)

Y sustituyendo
\(S = x^2 + 4x \frac{108}{x^2} = x^2 + \frac{432}{x} = f(x) \)

Hay que minimizar \(f(x) \):

\(f'(x) = 2x - \frac{432}{x^2} \)

\(f'(x) = 0 \) \(\Rightarrow 2x - \frac{432}{x^2} = 0 \) \(\Rightarrow 2x^3 - 432 = 0 \) \(\Rightarrow x = \sqrt[3]{\frac{432}{2}} = 6 \) (posible extremo relativo)

\(f''(x) = 2 + \frac{432 \cdot 2x}{x^4} \)

\(f''(6) > 0 \) \(\Rightarrow x = 6 \) en un mínimo relativo de \(f \).
b) Recta tangente a \(y = f(x) \) en \(x = 2 \)

\[
y - f(a) = f'(a) (x - a)
\]

En nuestro caso \(a = 1 \) y \(f(x) = x^2 + x - 1 \).

\[
f(1) = 1 \\
\Rightarrow f'(1) = 3 \Rightarrow y - 1 = 3(x - 1) \text{ recta tangente a } f(x) \text{ en } x = 1
\]

5a) \[
\int \frac{-dx}{1 + e^x} = \left[t = e^x \\
x = \log t \to dx = \frac{1}{t} dt \right] = \int \frac{-dt}{(1+t)t}
\]

Descomponemos en fracciones simples:

\[
\frac{-1}{(1+t)t} = \frac{A}{1+t} + \frac{B}{t} = \frac{At + B(1+t)}{(1+t)t} \Rightarrow At + B(1+t) = -1
\]

Para \(t = -1 \) : \(-A = -1 \Rightarrow A = 1 \)

Para \(t = 0 \) : \(B = -1 \)

Así:

\[
\frac{-1}{(1+t)t} = \frac{1}{1+t} - \frac{1}{t}
\]

y, por tanto:

\[
\int \frac{dt}{1+t} - \int \frac{dt}{t} = \log |1+t| - \log |t| = \log |1+e^x| - \log |e^x| + C
\]

b) Calculamos los puntos de corte de \(f \) y \(g \):

\[f(x) = g(x) \Rightarrow -x^2 + 2x + 4 = x + 2 \Rightarrow x^2 - x - 2 = 0 \Rightarrow x = \{ -1, 2 \} \]

Calculamos el área pedida:

\[
A = \left| \int_{-1}^{2} (f(x) - g(x)) \, dx \right| = \left| \int_{-1}^{2} [(x^2 - 2x + 4) - (x + 2)] \, dx \right| = \\
= \left| \int_{-1}^{2} (-x^2 + x + 2) \, dx \right| = \left| \left[-\frac{x^3}{3} + \frac{x^2}{2} + 2x \right]_{-1}^{2} \right| = \\
\]

\[
\]

Cipri
6) \[\pi: x + 2y - z - 4 = 0, \quad \Gamma = \begin{cases} x - 2y - z = 0 \\ y - z - 2 = 0 \end{cases} \]

3) \([P, \pi], \text{ ¿d}(P, \pi)? \]
\[
\text{d}(P, \pi) = \frac{|1 + 2 \cdot 2 - 1 - 4|}{\sqrt{1^2 + 2^2 + (1)^2}} = \frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3} u
\]

b) Sea \(A \) el punto de intersección de \(\Gamma \) y \(\pi \)
\[A = \begin{cases} x + 2y - z - 4 = 0 \\ x - 2y - z = 0 \\ y - z - 2 = 0 \end{cases} \]

De [3] \(z = -2 \)
Sustituimos en [2]: \(y = \frac{-2 + 2}{-4} = 0 \)
Sustituyendo en [1]: \(x = 2 \)

El área del triángulo es:
\[
\left| \text{Área del triángulo} \right| = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{1}{2} \left| \det \begin{pmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 0 & 4 & 1 \end{pmatrix} \right| = \frac{1}{2} \sqrt{(-6)^2 + (-6)^2 + (-3)^2} = \frac{\sqrt{6}}{2} u^2
\]

7) a) \(\Gamma = \begin{cases} 2x - 2y = 4 \\ z = 0 \end{cases} \)
\[S = \begin{cases} x = \frac{y + 2}{-2} \\ z = \frac{z - 2}{4} \end{cases} \]

Estudiamos los rangos de \(M \) y \(\tilde{M} \):
\[M = \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 2 & 3 & 0 \end{pmatrix} \begin{array}{c} -F_1 + F_3 \\ \implies \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \end{array} \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{array}{c} -F_1 + F_3 \\ \implies \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \end{array} = \text{rango } M = 3
\]

\[\hat{M} = \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 2 & 3 & 0 \end{pmatrix} \begin{array}{c} -F_1 + F_3 \\ \implies \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \end{array} \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{array}{c} -F_1 + F_3 \\ \implies \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \end{array} = \text{rango } \hat{M} = 4
\]

Como rango \(M = 3 \) y rango \(\hat{M} = 4 \) \(\therefore \) \(r \) y \(s \) se cruzan

b) \(\Pi_2 \subseteq \left\{ P(-1, 0, 2) \right\} \quad \text{ya que} \quad \overline{u}_r = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \quad \overline{u}_s = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}
\]

\(\Pi_2 = \text{det} \begin{pmatrix} x + 1 & -2 & 3 \\ y & -2 & 2 \\ z - 2 & 0 & 1 \end{pmatrix} = -2x + 2y + 10z - 2z = 0 = \)

\(\therefore \text{se cumple el rango}
\]

3. a) \(A = \) usuario de menos de 34 años
\(B = \) \(\quad \text{entre 34 y 54 años} \)
\(C = \) \(\quad \text{más de 54 años} \)
\(D = \) el usuario de conecta a diario

\(A \rightarrow 0.13 < \overline{D} \quad \therefore \begin{pmatrix} P(D) \end{pmatrix} = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C) = 0.3 \cdot 0.2 + 0.25 \cdot 0.6 + 0.05 \cdot 0.9 = 0.269 \)

\(B \rightarrow 0.25 < \overline{D} \quad \therefore \begin{pmatrix} P(B/D) \end{pmatrix} = \frac{P(B \cap D)}{P(D)} = \frac{P(B)P(D/B)}{1 - P(D)} = \frac{0.25 \cdot 0.4}{1 - 0.269} = 0.1264 \)

b) \(\overline{X} = \) tiempo que un usuario de Instagram pasa conectado (a diario)
\(\overline{X} \sim N(53, 10) \)
\[b_1 \] \(P(X \geq 30) = P \left(Z \geq \frac{30-53}{10} \right) = P(Z \geq -2.3) = P(Z \leq 2.3) = 0.9893 \)

\[b_2 \] \(P(40 \leq X \leq 67) = P \left(\frac{40-53}{10} \leq X \leq \frac{67-53}{10} \right) = P(-1.3 \leq Z \leq 1.4) = P(Z \leq 1.4) - P(Z \leq -1.3) = P(Z \leq 1.4) - \left(1 - P(Z \leq 0.3) \right) = 0.9122 - \left(1 - 0.0932 \right) = 0.8224 \)

El 82.24% de los usuarios se conectan entre 40 y 67 minutos.