Paradoja de Monty Hall

La paradoja de Monty Hall es un problema matemático de probabilidad basado en el concurso televisivo estadounidense Let's Make a Deal (Trato hecho). El problema fue bautizado con el nombre del presentador de dicho concurso: Monty Hall.

El enunciado más famoso del problema, extraído de una carta de Craig F. Whitaker a la columna de Marilyn vos Savant en Parade Magazine en 1990 (como la citan Bohl, Liberatore y Nydick), es el siguiente:

Supón que estás en un concurso, y se te ofrece escoger entre tres puertas: detrás de una de ellas hay un coche, y detrás de las otras, cabras. Escoges una puerta, digamos la nº1, y el presentador, *que sabe lo que hay detrás de las puertas*, abre otra, digamos la nº2, que contiene una cabra. Entonces te pregunta: "¿No prefieres escoger la nº3?". ¿Es mejor para ti cambiar tu elección?

Intuitivamente parece que da igual mantener la elección o cambiar, sin embargo, el análisis probabilístico del problema nos dice que la mejor opción, en cuanto a probabilidad se refiere, es cambiar de elección, ya que se duplican las probabilidades. Como la respuesta correcta parece contradecir la intuición, es aparentemente una paradoja, y por eso, dicho problema se conoce como "Paradoja de Monty Hall". Vamos a verlo:

Solución "elemental" (combinatoria):

			Resultado	
Detrás de la puerta 1	Detrás de la puerta 2	Detrás de la puerta 3	Si no cambia	Si cambia
Cabra	Cabra	Coche	Gana una cabra	Gana un coche
Cabra	Coche	Cabra	Gana una cabra	Gana un coche
Coche	Cabra	Cabra	Gana un coche	Gana una cabra

Solución probabilística (bayesiana):

En primer lugar, nombramos los sucesos:

Llamamos:

$$\begin{cases} C = \text{posición del coche} \implies C_i = \text{el coche está en la } i - \text{ésima puerta } (i = 1, 2, 3) \\ M = \text{puerta abierta por Monty} \implies M_i = \text{Monty abre la } i - \text{ésima puerta} \end{cases}$$

Supongamos que se ha elegido la puerta nº1 y que Monty abre la puerta nº2. Sabemos que

$$P\begin{pmatrix} C_1 \\ M_2 \end{pmatrix} = \frac{P\begin{pmatrix} M_2 \\ C_1 \end{pmatrix} P(C_1)}{P(M_2)} \quad \text{y} \quad P\begin{pmatrix} C_3 \\ M_2 \end{pmatrix} = \frac{P\begin{pmatrix} M_2 \\ C_3 \end{pmatrix} P(C_3)}{P(M_2)}$$

Se tiene que $P(C_1) = P(C_3) = \frac{1}{3}$ (probabilidades a priori), que $P(M_2/C_1) = \frac{1}{2}$ y que $P(M_2/C_3) = 1$

(verosimilitudes o probabilidades a posteriori), y como

$$P\begin{pmatrix} C_1 \\ M_2 \end{pmatrix} + P\begin{pmatrix} C_3 \\ M_2 \end{pmatrix} = 1$$

resulta que

$$\begin{cases}
P\binom{C_1}{M_2} = \frac{1}{3} \\
P\binom{C_3}{M_2} = \frac{2}{3}
\end{cases}$$

esto es, al cambiar de puerta se duplican las probabilidades.

Solución mediante variables aleatorias:

Sea $X:(\Omega, B, P) \rightarrow \{1, 2, 3\}$ la variable aleatoria detrás de la cual se encuentra el coche, e $Y:(\Omega, B, P) \rightarrow \{1, 2, 3\}$ la puerta que escoge aleatoriamente el candidato.

Las variables aleatorias X e Y son estocásticamente independientes.

Se $M:(\Omega, B, P) \rightarrow \{1, 2, 3\}$ lo que se encuentra detrás de la puerta que el moderador, de manera aleatoria, escoge (entre las que aún no se han abierto).

Se tiene que P(M = cabra) = 1.

La probabilidad de que el candidato se lleve el coche bajo el supuesto de que él no cambia de puerta es

$$P(X = Y/M = \text{cabra}) = \frac{P(X = Y)}{P(M = \text{cabra})} = \frac{\frac{1}{3}}{1} = \frac{1}{3}$$

y, por tanto, la probabilidad de que el candidato se lleve el coche bajo el supuesto de que él cambie de puerta es entonces:

$$P(X \neq Y/M = \text{cabra}) = 1 - P(X = Y) = 1 - \frac{1}{3} = \frac{2}{3}$$

Webgrafía:

Wikipedia: Problema de Monty Hall

https://es.wikipedia.org/wiki/Problema_de_Monty_Hall

Date un Vlog: La paradoja en la que cae el 90% de la gente...

https://www.youtube.com/watch?v=1BpTBzDQuRE