Definición: Los números irracionales son los números reales que no son racionales, es decir, aquellos que no se pueden escribir en forma de fracción.

Teorema: El número e es irracional.

Demostración:

Supongamos que $e = \frac{a}{b} \operatorname{con} a, b \in \mathbb{Z} \text{ y } b \neq 0.$

Como

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$$

se tiene que

$$\frac{b}{a} = e^{-1} = \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n}{n!} = \sum_{n=0}^{a} \frac{\left(-1\right)^n}{n!} + \sum_{n=a+1}^{+\infty} \frac{\left(-1\right)^n}{n!}$$

de donde

$$\frac{b}{a} - \sum_{n=0}^{a} \frac{\left(-1\right)^{n}}{n!} = \sum_{n=a+1}^{+\infty} \frac{\left(-1\right)^{n}}{n!}$$

Multiplicamos ambos miembros por $(-1)^{a+1} a!$

$$(-1)^{a+1} a! \frac{b}{a} - (-1)^{a+1} a! \sum_{n=0}^{a} \frac{(-1)^n}{n!} = (-1)^{a+1} a! \sum_{n=a+1}^{+\infty} \frac{(-1)^n}{n!}$$

y simplificamos

$$(-1)^{a+1} (a-1)! b - (-1)^{a+1} \sum_{n=0}^{a} \frac{(-1)^n a!}{n!} = (-1)^{a+1} \sum_{n=a+1}^{+\infty} \frac{(-1)^n a!}{n!}$$
[1]

Como $(-1)^{a+1}(a-1)!b \in \mathbb{Z}$ y $(-1)^{a+1}\sum_{n=0}^{a}\frac{(-1)^n a!}{n!} \in \mathbb{Z}$ al ser $n \le a$, resulta que

$$(-1)^{a+1}(a-1)!b-(-1)^{a+1}\sum_{n=0}^{a}\frac{(-1)^n a!}{n!}\in\mathbb{Z}$$

Por otro lado,

$$(-1)^{a+1} \sum_{n=a+1}^{+\infty} \frac{(-1)^n a!}{n!} = \sum_{n=a+1}^{+\infty} \frac{(-1)^{n+a+1} a!}{n!} = \frac{1}{a+1} - \frac{1}{(a+1)(a+2)} + \frac{1}{(a+1)(a+2)(a+3)} - \dots$$

y esta serie alternada es convergente aplicando el criterio de Leibniz, y su suma S, verifica

$$\frac{1}{a+1} < S < \frac{1}{a+1} - \frac{1}{(a+1)(a+2)} = \frac{1}{a+2}$$

Como $a \ge 1$, resulta que

es decir, el miembro de la izquierda de [1] es un número entero y el miembro de la derecha, un número irracional, lo que supone una contradicción.

C.Q.D.

Teorema: El conjunto de los números irracionales es no numerable y su cardinal es $c = |\mathbb{R}|$.

Problema abierto: No se sabe si 2^e , 2^{π} , π^e , $e + \pi$ o γ son racionales o irracionales.