<u>Definición:</u> Sea $P(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x]$. Un número complejo $\omega \in \mathbb{C}$ se denomina algebraico si $P(\omega) = 0$, es decir, si es solución de una ecuación polinómica con coeficientes enteros. Los números complejos que no son algebraicos se denominan trascendentes.

Teorema de Liouville, 1844: Existen números trascendentes.

Teorema de Cantor, 1874: El conjunto de los números algebraicos es numerable.

Corolario de Cantor, 1874: El conjunto de los números trascendentes es no numerable.

Teorema de Hermite, **1873**: El número *e* es trascendente.

Demostración: (Hermite)

Para cada primo p consideramos el polinomio

$$h_p(x) = \frac{1}{(p-1)!} x^{p-1} (x-1)^p ... (x-r)^p \in \mathbb{Q}[x]$$

Claramente, $\deg h_p = (r+1) p - 1 := s$, luego las derivadas $h_p^{(l)}$ de orden l > s, son idénticamente nulas. Pongamos

$$m(k,l) = h_p^{(l)}(k)$$
 para $k = 0,...,r; l = 0,...,s$

Lema: Las funciones m(l,k) verifican:

i) m(l,k) es un entero múltiplo de p para $(k,l) \neq (0, p-1)$

ii)
$$m(0, p-1) = (-1)^p ... (-r)^p$$

Demostración:

Distinguimos casos:

Caso $k \ge 1$. Escribamos

$$(p-1)!h_p = gh \text{ con } g = (x-k)^p \text{ y } h = \frac{(p-1)!h_p}{g} \in \mathbb{Z}(x)$$

Derivando esta última igualdad por la regla de Leibniz

$$(p-1)!h_p^{(l)} = \sum_{j=1}^{l} {l \choose j} g^{(j)} h^{(l-j)}$$

Ahora bien, es evidente que $g^{(j)}(k) = 0$ salvo $g^{(p)}(k) = p!$, luego

$$(p-1)!h_p^{l)}(k) = \begin{cases} 0 & \text{si} \quad l$$

Si l < p entonces ya hemos concluido, y si $l \ge p$, entonces

$$h_p^{(l)}(k) = p \binom{l}{p} h^{l-p}(k)$$

y puesto que $h \in \mathbb{Z}[x]$, lo mismo ocurre con los coeficientes de sus derivadas, con lo que $p\binom{l}{p}h^{l-p}(k) \in \mathbb{Z}$. Así, $m(k,l) = h_p^{l}(k)$ es un múltiplo entero de p, y con esto hemos demostrado el apartado i) en el caso $k \neq 0$.

Caso k = 0. Sea

$$(p-1)!h_p = gh \text{ con } g = x^{p-1} \text{ y } h = (x-1)^p ... (x-r)^p \in \mathbb{Z}(x)$$

De nuevo, derivando

$$(p-1)!h_p = \sum_{j=1}^{l} {l \choose j} g^{j} h^{l-j}$$

Ahora tenemos que $g^{(j)}(0) = 0$, excepto $g^{(p-1)}(0) = (p-1)!$, con lo que

$$(p-1)!h_p^{(l)}(0) = \begin{cases} 0 & \text{si } l < p-1 \\ \binom{l}{p-1}(p-1)!h^{l-p+1}(0) & \text{si } l \ge p-1 \end{cases}$$

Si l < p-1 hemos terminado, y si $l \ge p-1$ se tiene que

$$h_p^{l)}(0) = \binom{l}{p-1} h^{l-p+1}(0)$$

Además, como estamos suponiendo que $l \ge p-1$, el polinomio h será de la forma

$$h = \dots + cx^{l-p+1} + \dots \text{ con } c \in \mathbb{Z}$$

(incluso puede ser c=0) donde solo hemos destacado el monomio que nos interesa. Evidentemente,

$$h^{l-p+1}(0) = (l-p+1)!c$$

y de $h_p^{(l)}(0) = {l \choose p-1} h^{l-p+1}(0)$ resulta:

$$h_p^{(l)}(0) = {l \choose p-1}(l-p+1)!c = \frac{l!}{(p-1)!}c$$

Como l > p-1, se tiene que $m(0,l) = h_p^{(l)}(0) = p \cdot ... \cdot l \cdot c$, que es claramente múltiplo de p. Con esto, hemos demostrado el apartado i) para k = 0 y $l \neq p-1$.

Vamos a demostrar ahora el apartado ii). Si l = p - 1, entonces $m(0, p - 1) = h_p^{p-1}(0) = c$ que es en esta hipótesis el término independiente de h. Así,

$$m(0, p-1) = h(0) = (-1)^{p} ... (-r)^{p}$$

C.Q.D.

Por reducción al absurdo, supongamos que e es algebraico sobre \mathbb{Q} . Entonces, existirá un polinomio no nulo $g \in \mathbb{Q}[x]$ tal que g(e) = 0. Multiplicando por un número entero conveniente, podemos eliminar los denominadores de los coeficientes de g y suponer que $g \in \mathbb{Z}[x]$. Sea

$$g = a_0 x^m + a_1 x^{m-1} + \dots + a_r x^{m-r}$$

con $a_0 \neq 0$ y $a_r \neq 0$. Evidentemente, $g = (a_0 x^r + a_1 x^{r-1} + ... + a_r) x^{m-r}$, y puesto que $e^{m-r} \neq 0$, concluimos que

$$a_0 e^r + a_1 e^{r-1} + \dots + a_r = 0 \text{ con } a_0, a_r \neq 0, \ a_i \in \mathbb{Z}$$
 [1]

Definimos el polinomio

$$H_p = \sum_{l=0}^{s} \frac{\partial^l h_p}{\partial x^l} \in \mathbb{Q}[x] \text{ con } s = rp + p - 1 = \deg h_p$$

Se tiene que

$$\frac{\partial H_p}{\partial x} = \sum_{l=0}^{s} \frac{\partial^{l+1} h_p}{\partial x^{l+1}} = \left[k = l+1\right] = \sum_{k=1}^{s+1} \frac{\partial^k h_p}{\partial x^k} = \sum_{k=1}^{s} \frac{\partial^k h_p}{\partial x^k}$$

puesto que $\frac{\partial^{s+1} h_p}{\partial x^{s+1}} = 0$, y así

$$\frac{\partial H_p}{\partial x} = H_p - h_p \text{ o bien } h_p = H_p - \frac{\partial H_p}{\partial x}$$
 [2]

Consideramos ahora la función real de variable real:

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(t) = e^{-t}H_p(t)$$

Es una función derivable, y derivando,

$$f'(t) = -e^{-t}H_{p}(t) + e^{-t}H_{p}'(t) = -e^{-t}(H_{p}(t) - H_{p}'(t))$$

Como H_p es un polinomio, su derivada formal coincide con su derivada como función, y teniendo en cuenta [2], resulta:

$$f'(t) = -e^{-t}h_p(t) \quad \forall t \in \mathbb{R}$$

Con esta primitiva, podemos calcular la integral

$$I_{k}(p) = \int_{0}^{k} -e^{-t} h_{p}(t) dt = \int_{0}^{k} f'(t) dt = f(k) - f(0) = e^{-k} H_{p}(k) - H_{p}(0)$$

para k = 0, ..., r. Como consecuencia,

$$\delta(p) := \sum_{k=0}^{r} a_k e^k I_k(p) = \sum_{k=0}^{r} a_k e^k \left(e^{-k} H_p(k) - H_p(0) \right) = \sum_{k=0}^{r} a_k H_p(k) - H_p(0) \sum_{k=0}^{r} a_k e^{k} I_k(p) = \sum_$$

Teniendo en cuenta [1], $\sum_{k=0}^{r} a_k e^k = 0$, con lo que

$$\delta(p) = \sum_{k=0}^{r} a_k H_p(k)$$

Vamos a probar que esta igualdad es imposible para p suficientemente grande, lo que contradiría el que e es algebraico.

Veamos primero que

$$\lim_{p\to+\infty}\delta(p)=0$$

En efecto, por la definición de δ como suma de integrales:

$$\left| \delta(p) \right| \leq \sum_{k=0}^{r} \left| a_{k} e^{k} I_{k}(p) \right| = \sum_{k=0}^{r} \left| a_{k} e^{k} \right| \left| \int_{0}^{k} -e^{-t} h_{p}(t) dt \right| \leq \sum_{k=0}^{r} \left| a_{k} e^{k} \right| \left| \int_{0}^{k} \left| -e^{-t} h_{p}(t) \right| dt = \sum_{k=0}^{r} \left| a_{k} e^{k} \right| \left| \int_{0}^{k} \frac{\left| h_{p}(t) \right|}{\left| e^{t} \right|} dt$$

Se tiene que $|e^t| \ge 1$ en [0, r] y

$$|h_p(t)| \le \frac{1}{(p-1)!} r^{p-1} r^p \dots r^p = \frac{r^{(r+1)p-1}}{(p-1)!} \le \frac{n^p}{(p-1)!} := \varepsilon(p)$$

donde $n = r^{r+1}$, y como consecuencia

$$\left| \delta(p) \right| \leq \sum_{k=0}^{r} \left| a_{k} e^{k} \right| \int_{0}^{k} \varepsilon(p) dt = \sum_{k=0}^{r} \left| a_{k} e^{k} \right| k \varepsilon(p) = \varepsilon(p) \sum_{k=0}^{r} k \left| a_{k} e^{k} \right|$$

Al ser el sumatorio una constante que no depende de p, bastará probar que

$$\lim_{p\to +\infty} \varepsilon(p) = 0$$

Tomamos p suficientemente grande (> n+1 para ser exactos). Entonces:

$$\varepsilon(p) = \frac{n^p}{(p-1)!} = \frac{n^{n+1}}{n!} \cdot \frac{n}{n+1} \cdot \dots \cdot \frac{n}{p-2} \cdot \frac{n}{p-1}$$

y se tiene que:

$$\frac{n}{n+1} \le 1, ..., \frac{n}{p-2} \le 1$$

Como consecuencia,

$$0 \le \varepsilon(p) \le \frac{n^{n+1}}{n!} \cdot \frac{n}{p-1} = \frac{d}{p-1}$$

donde $d = \frac{n^{n+1}}{n!} \cdot n$ es constante.

Obviamente, $\lim_{p\to +\infty} \frac{d}{p-1} = 0$, y eso implica que $\lim_{p\to +\infty} \varepsilon(p) = 0$, lo que a su vez implica que $\lim_{p\to +\infty} \delta(p) = 0$.

Teniendo en cuenta que $\lim_{p\to +\infty} \delta(p) = 0$ y que $\delta(p) = \sum_{k=0}^{r} a_k H_p(k)$, obtenemos:

$$0 = \lim_{p \to \infty} \sum_{k=0}^{r} a_k H_k(k) = \lim_{p \to \infty} \sum_{k=0}^{r} a_k \sum_{l=0}^{s} \frac{\partial^l h_p}{\partial x^l}(k) = \lim_{p \to \infty} \sum_{\substack{k=0,\dots,r \\ l=0,\dots,s}} a_k \frac{\partial^l h_p}{\partial x^l}(k) = \lim_{p \to \infty} \sum_{\substack{k=0,\dots,r \\ l=0,\dots,s}} a_k m(k,l)$$

es decir,

$$0 = \lim_{p \to \infty} \sum_{\substack{k=0,\dots,r \\ l=0}} a_k m(k,l)$$
 [3]

Aplicando el lema previo,

$$\sum_{\substack{k=0,\dots,r\\l=0}} a_k m(k,l) = up + a_0 \left(-1\right)^p \dots \left(-r\right)^p \text{ para cierto } u \in \mathbb{Z}$$

Si p es suficientemente grande $(>|a_0| y>r)$, con precisión), entonces p no divide al sumando $a_0(-1)^p...(-r)^p$, y por ello, $up+a_0(-1)^p...(-r)^p$ es un número entero no nulo. Esto significa:

$$\left| \sum_{\substack{k=0,\dots,r \\ l=0}} a_k m(k,l) \right| = \left| up + a_0 (-1)^p \dots (-r)^p \right| \ge 1$$

y, por tanto,

$$\lim_{p \to \infty} \left| \sum_{\substack{k=0,\dots,r \\ l=0,\dots,s}} a_k m(k,l) \right| \ge 1$$

Lo que no puede ser, a la vista de [3].

C.Q.D.

Resultados sobre la trascendencia de números:

Teorema: Si α y β son números trascendentes, entonces al menos uno de los números $\alpha + \beta$, $\alpha\beta$ es trascendente.

Teorema¹: Cualquier operación algebraica con números algebraicos proporciona un nuevo número algebraico.

Teorema de Lindemann, 1882: El número e^{α} es trascendente para todo número algebraico $\alpha \neq 0$.

Teorema de Lindemann, 1882: El número π es trascendente.

Demostración:

Sabemos que $e^{x+iy} = e^x (\cos y + i \sin y) \quad \forall x + iy \in \mathbb{C}$, luego

$$e^{i\pi} = \cos \pi + i \sin \pi = -1$$

Así, si $i\pi$ fuera algebraico, $e^{i\pi}=-1$ sería trascendente, lo que es absurdo. Por tanto, $i\pi$ es trascendente, e i es algebraico, luego π es trascendente.

C.Q.D.

Corolario: Si $\alpha \in \mathbb{C} - \{0,1\}$ es un número algebraico, entonces $\log \alpha$ es trascendente.

Teorema de Lindemann-Weierstrass, 1885: Si $\alpha_1,...,\alpha_n$ son números algebraicos linealmente independientes sobre \mathbb{Q} , entonces $e^{\alpha_1},...,e^{\alpha_n}$ son algebraicamente independientes sobre \mathbb{Q} , es decir, $\left[\mathbb{Q}\left(e^{\alpha_1},...,e^{\alpha_n}\right):\mathbb{Q}\right]=n$.

Corolario: Si $\alpha \in \mathbb{C} - \{0\}$ es un número algebraico, entonces los números e^{α} , $\cos \alpha$, $\sin \alpha$ y tg α son trascendentes.

Teorema de Gelfond-Schneider, 1934-1935: Si α y β son números algebraicos \neq 0,1, y si $\beta \notin \mathbb{Q}$, entonces α^{β} es un número trascendente.

Teorema: Sea $\alpha \in \mathbb{C}$ un número algebraico e $i \in \mathbb{C}$ la unidad imaginaria. Entonces, $i\alpha$ también es algebraico.

Teorema: Sean $\alpha, \beta \in \mathbb{C}$ dos números algebraicos y $P \in \mathbb{Q}[x, y]$. Entonces, $P(\alpha, \beta)$ es un número algebraico.

Teorema de Thue-Siegel-Roth, 1955: Si $\alpha \in \mathbb{R}$ es algebraico, entonces para cada $\varepsilon > 0$, la inecuación $\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{2+\varepsilon}}$ solo tiene un número finito de soluciones racionales $\frac{p}{q}$.

i)
$$L \subset K(L)$$

ii) K(L)/L es algebraica (y, por tanto, $K(L) \subset L$)

Como consecuencia, el conjunto L es un cuerpo (cierre algebraico de K en E).

¹ Enunciado formal: Sea E/K una extensión de cuerpos, y $L \subset E$ el conjunto de los elementos algebraicos sobre K. Se tiene que:

Corolario (Criterio de trascendencia): Si para algún $\varepsilon > 0$ hay infinitas soluciones racionales, el número $\alpha \in \mathbb{R}$ es trascendente.

Limitación del criterio de Thue-Siegel-Roth: El conjunto de números trascendentes que pueden ser identificados por el criterio de Thue-Siegel-Roth es un conjunto de medida (de Lebesgue) nula.

Conjetura de Schanuel, ~ 1960: Sean $z_1,...,z_n\in\mathbb{C}$ linealmente independientes sobre \mathbb{Q} . Entonces, $\left[\mathbb{Q}\left(z_{1},...,z_{n},e^{z_{1}},...,e^{z_{n}}\right):\mathbb{Q}\right]\geq n.$