SERIES DE NÚMEROS REALES:

CRITERIOS DE CONVERGENCIA

Cipri Santiago Zaragoza Departamento de Matemáticas Diciembre de 2009

Conceptos

Serie

Una serie de números reales es un par ordenado $(\{a_n\}, \{A_n\})$ en el que $\{a_n\}$ es una sucesión de números reales y $\{A_n\}$ es la sucesión definida por: $A_1 = a_1$ y $A_{n+1} = A_n + a_{n+1}$ $\forall n \in \mathbb{N}$. La sucesión $\{a_n\}$ recibe el nombre de término general de la serie, mientras que la sucesión $\{A_n\}$ se llama sucesión de sumas parciales de la serie. La serie $(\{a_n\}, \{A_n\})$ se representa por $\sum_{n\geq 1} a_n$.

Serie convergente

La serie $\sum_{n\geq 1} a_n$ es convergente cuando la sucesión de sumas parciales lo sea, en cuyo caso, el

límite de dicha sucesión recibe el nombre de suma de la serie y se representa por $\sum_{n=1}^{+\infty} a_n$.

$$\sum_{n=1}^{+\infty} a_n := \lim_{n \to +\infty} A_n$$

Serie absolutamente convergente

La serie $\sum_{n\geq 1} a_n$ es absolutamente convergente, cuando la serie $\sum_{n\geq 1} |a_n|$ sea convergente.

Propiedad de las series absolutamente convergentes

En dichas series se pueden reordenar sus términos sin que ello afecte ni a la convergencia ni a la suma de la serie.

Series conmutativamente convergentes

La serie $\sum_{n\geq 1} a_n$ es conmutativamente convergente cuando para toda biyección $\Phi: \mathbb{N} \to \mathbb{N}$, la serie $\sum_{n\geq 1} a_{\Phi(n)}$ es convergente y tiene la misma suma que la serie $\sum_{n\geq 1} a_n$.

Relaciones entre los tipos de convergencia

- (1) Toda serie absolutamente convergente es convergente.
- (2) La convergencia absoluta y la conmutativa equivalen para series de números reales.

Series de términos cualesquiera

Condición necesaria de convergencia

Sea $\sum a_n$ una serie de números reales convergente. Entonces $\{a_n\} \to 0$.

Criterio general de convergencia o criterio de Cauchy

Sea $\sum a_n$ una serie de números reales. Son equivalentes:

- i) $\sum a_n$ es convergente
- ii) $\forall \varepsilon > 0, \exists m \in \mathbb{N} : \text{si } n \geq m \text{ y } h \in \mathbb{N} \text{ es arbitrario, entonces}$

$$|a_{n+1} + a_{n+2} + \dots + a_{n+h}| < \varepsilon$$

Test de comparación

Sean $\sum a_n$ y $\sum b_n$ series de números reales. Supongamos que $|a_n| \leq b_n$, $\forall n \in \mathbb{N}$ y que la serie $\sum b_n$ es convergente. Entonces, $\sum a_n$ es convergente y se verifica que

$$\left| \sum_{n=1}^{+\infty} a_n \right| \le \sum_{n=1}^{+\infty} b_n$$

En particular, si $\sum a_n$ es una serie de números reales y $\sum |a_n|$ es convergente, entonces la serie $\sum a_n$ es convergente y se tiene que

$$\left| \sum_{n=1}^{+\infty} a_n \right| \le \sum_{n=1}^{+\infty} |a_n|$$

Criterio de Gauss

Si para la serie $\sum_{n\geq 1} a_n$ la razón de dos términos consecutivos cualesquiera puede ser representada en la forma

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\theta_n}{n^2}$$

donde λ y μ son constantes y θ_n una cantidad acotada, entonces

$$\sum_{n\geq 1} a_n \begin{cases} \text{converge si } \lambda > 1 \text{ ó } \lambda = 1 \text{ y } \mu > 1 \\ \text{diverge si } \lambda < 1 \text{ ó } \lambda = 1 \text{ y } \mu \leq 1 \end{cases}$$

Series de términos positivos

Criterio de comparación por paso al límite

Sean $\{a_n\}, \{b_n\} \subset \mathbb{R}^+$.

i) Supongamos que $\left\{\frac{a_n}{b_n}\right\} \to L \in \mathbb{R}^+$. Entonces

$$\sum a_n$$
 convergente $\Leftrightarrow \sum b_n$ convergente

2

ii) Si $\left\{\frac{a_n}{b_n}\right\} \to 0$ y $\sum b_n$ es convergente, entonces $\sum a_n$ es convergente.

iii) Si $\left\{\frac{a_n}{b_n}\right\} \to +\infty$ y $\sum a_n$ es convergente, entonces $\sum b_n$ es convergente

Criterio de la raíz o de Cauchy

Sea $a_n \geq 0$.

i) Si $\lim_{n\to+\infty} \sqrt[n]{a_n} = L > 1 \Rightarrow \sum_{n\geq 1} a_n$ no converge

ii) Si $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1 \Rightarrow \sum_{n>1}^{n \ge 1} a_n$ converge

Criterio de Kummer

Sean $a_n, b_n \geq 0$.

i) Si $\exists \varepsilon > 0$, y $\exists p \in \mathbb{N}$: para $n \geq p$ se tiene que $b_n - b_{n+1} \frac{a_{n+1}}{a_n} \geq \varepsilon$, entonces $\sum a_n$ es

ii) Si $\exists p \in \mathbb{N}$ tal que, para $n \geq p$, se tiene $b_n - b_{n+1} \frac{a_{n+1}}{a_n} \leq 0$ y la serie $\sum \frac{1}{b_n}$ no es convergente, entonces la serie $\sum a_n$ tampoco converge.

Criterio del cociente o de D'Alembert

Sea $a_n > 0$.

i) Si
$$\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = L > 1 \Rightarrow \sum_{n\geq 1} a_n$$
 no converge

i) Si
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L > 1 \Rightarrow \sum_{n \ge 1} a_n$$
 no converge ii) Si $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1 \Rightarrow \sum_{n \ge 1} a_n$ converge

Criterio de Raabe

Sea $a_n \geq 0$.

i) Si
$$\lim_{n \to +\infty} n \left(1 - \frac{a_{n+1}}{a_n}\right) = L > 1 \Rightarrow \sum_{n > 1} a_n$$
 converge

ii) Si
$$\lim_{n \to +\infty} n \left(1 - \frac{a_{n+1}}{a_n}\right) = L < 1 \Rightarrow \sum_{n \ge 1}^{-} a_n$$
 no converge

Criterio de Bertrand

Sea $a_n \geq 0$. Si

$$\lim_{n \to +\infty} \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] \ln n \left\{ \begin{array}{l} > 1 \\ < 1 \end{array} \right. \Rightarrow \sum a_n \left\{ \begin{array}{l} \text{converge} \\ \text{diverge} \end{array} \right.$$

Criterio $n^k a_n$ o de Pringsheim

i) Si
$$\lim_{n \to +\infty} n^k a_n = L > 0$$
 entonces: $\sum_{n \ge 1} a_n$ converge $\Leftrightarrow k > 1$

ii) Si
$$\lim_{n \to +\infty} n^k a_n = 0$$
 y $k > 1 \Rightarrow \sum_{n \ge 1}^{\infty} a_n$ converge

iii) Si
$$\lim_{n\to+\infty} n^k a_n = +\infty$$
 y $k \ge 1 \Rightarrow \sum_{n\ge 1} a_n$ no converge

Criterio de condensación

Sea $\{a_n\} \setminus \text{con } a_n \geq 0$. Entonces,

$$\sum a_n$$
 converge $\Leftrightarrow \sum 2^n a_{2^n}$ converge

Criterio Si
$$\lim_{n\to +\infty} \frac{f(n)}{n^k} = L > 0$$
 entonces: $\sum_{n\geq 1} f\left(\frac{1}{n}\right)$ converge $\Leftrightarrow k>1$

Criterio (Caso particular del criterio de Pringsheim)

Sea $a_n = f\left(\frac{1}{n}\right) \ge 0, \forall n \in \mathbb{N}$ y tal que f es derivable en 0 con $f\left(0\right) = f'\left(0\right) = 0$. Supongamos que $f \in C^2(I)$ con $0 \in I$. Entonces, $\sum_{n \ge 1} f\left(\frac{1}{n}\right)$ converge.

Criterio integral de MacLaurin-Cauchy

Sea $f:[1,+\infty[\to \mathbb{R} \text{ una función continua y decreciente y, para cada } n \in \mathbb{N} \text{ sea } a_n=f(n).$ Entonces, la serie $\sum a_n$ y la integral impropia de Riemann $\int_1^{+\infty} f(n) dn$ tienen el mismo carácter.

Casos particulares:

i) Series armónicas o de Riemann:

$$\sum_{n\geq 1} \frac{1}{n^k} \text{ converge} \Leftrightarrow k > 1$$

ii) Sea $k \in \mathbb{N}$ fijo. Entonces:

$$\sum_{n\geq 1} n^k \, |\beta| \, \text{converge} \Leftrightarrow \beta < 1$$

iii) Serie geométrica:

$$\sum_{n\geq 1} x^n \text{ converge} \Leftrightarrow |x| < 1$$

en cuyo caso

$$\sum_{n=1}^{+\infty} x^n = \frac{1}{1-x}$$

iv) Serie aritmético-geométrica:

Sea $\sum a_n$ una serie aritmético-geométrica (es decir, $a_n = [a_1 + (n-1)d]r^{n-1}$ donde d = $a_{n+1}-a_n$ y $r=\frac{a_{n+1}}{a_n}$ son la diferencia y la razón, respectivamente). Entonces:

$$\sum_{n=1}^{+\infty} \left[a_1 + (n-1) d \right] r^{n-1} = \frac{a_1}{1-r} + \frac{rd}{(1-r)^2} \qquad \forall r \in]-1, 1[$$

v) Serie hipergeométrica

Sea $\sum a_n$ una serie hipergeométrica (es decir, $\frac{a_{n+1}}{a_n} = \frac{An+B}{An+C}$ con $A, B, C \in \mathbb{R}$). Se tiene que

$$\sum a_n \text{ converge } \Leftrightarrow C - B - A \ge 0$$

en cuyo caso

$$\sum_{n=1}^{+\infty} a_n = \frac{Ca_1}{C - B - A}$$

Series de términos cualesquiera

Criterios de Dirichlet y de Abel

Sean $\{a_n\}, \{b_n\} \subset \mathbb{R}: \sum |b_{n+1} - b_n|$ es convergente.

i) Criterio de Dirichlet

Si la sucesión de sumas parciales de $\sum a_n$ está acotada y $\{b_n\} \to 0$, entonces la serie $\sum a_n b_n$ es convergente.

ii) Criterio de Abel

Si la serie $\sum a_n$ es convergente, también lo es la serie $\sum a_n b_n$.

Criterio de Leibniz

Si $\{x_n\} \searrow 0$, la serie $\sum (-1)^{n+1} x_n$ es convergente