Cipri Santiago Zaragoza

Esquemas de Matemáticas

05/12/98

COMBINATORIA

Variaciones con repetición de m elementos tomados de n en n $(m, n \in \mathbb{N})$

$$\boxed{V'_{m,n} \equiv VR_m^n = m^n}$$

Distintos grupos de n elementos iguales o distintos que se pueden formar, de modo que un grupo se diferencie de los demás, bien en algún elemento, bien en su orden de colocación.

 \rightarrow Influye el orden \leftarrow

Variaciones de m elementos tomados de n en n $(1 \le n \le m)$

$$V_{m,n} \equiv V_m^n = m(m-1)\dots(m-n-1) = \frac{m!}{(m-n)!}$$

Distintos grupos de n elementos distintos que se pueden formar, de modo que un grupo se diferencie de los demás, bien en un elemento, bien en su orden de colocación.

 \rightarrow Influye el orden \leftarrow

Permutaciones de m elementos tomados de m en m $(m \in \mathbb{N})$

$$P_m = V_{m,m} = m!$$

Distintos grupos de m elementos que se pueden formar, de modo que un grupo se diferencie de los demás en su orden de colocación.

 \rightarrow Influye el orden \leftarrow

Permutaciones con repetición de m elementos donde el primero, segundo,..., último se repiten $\alpha, \beta, ..., \gamma$ veces, respectivamente $(n \in \mathbb{N}, \alpha, ..., \gamma \in \mathbb{N})$

$$P_n^{\alpha,\beta,\dots,\gamma} \equiv PR_n^{\alpha,\beta,\dots,\gamma} = \frac{n!}{\alpha!\beta!\dots\gamma!}$$

donde $\alpha + \beta + ... + \gamma = n \ge m$

Distintos grupos que se pueden formar con m elementos, de modo que un grupo se diferencie de los demás en su orden de colocación.

 \rightarrow Influye el orden \leftarrow

Combinaciones de m elementos tomados de n en n $(1 \le n \le m)$

$$C_{m,n} = \frac{V_{m,n}}{P_n} = \frac{m!}{n! (m-n)!} = \begin{pmatrix} m \\ n \end{pmatrix}$$

Distintos grupos de n elementos distintos que se pueden formar, de modo que un grupo se diferencie de los demás en al menos un elemento.

 \rightarrow No influye el orden \leftarrow

Combinaciones con repetición de m elementos tomados de n en n $(n, m \in \mathbb{N})$

$$C'_{m,n} \equiv CR_{m,n} = \begin{pmatrix} m+n-1 \\ n \end{pmatrix} = \begin{pmatrix} m+n-1 \\ m-1 \end{pmatrix}$$

Distintos grupos que se pueden formar con n elementos iguales o distintos, de modo que un grupo se diferencie de los demás si tiene distintos elementos.

 \rightarrow No influye el orden \leftarrow

Propiedades de los números combinatorios

$$\begin{pmatrix} m \\ n \end{pmatrix} = \frac{m!}{n! (m-n)!} \quad \forall m \ge n \ge 0 \quad \text{(En general } \forall m \in \mathbb{R}, \ n \in \mathbb{N} \cup \{0\})$$

$$* \left(\begin{array}{c} m \\ n \end{array} \right) = \left(\begin{array}{c} m \\ m-n \end{array} \right)$$

$$* \left(\begin{array}{c} m \\ n-1 \end{array} \right) + \left(\begin{array}{c} m \\ n \end{array} \right) = \left(\begin{array}{c} m+1 \\ n \end{array} \right)$$

$$*\sum_{n=0}^{m} \binom{m}{n} = 2^{m}$$

*
$$\begin{pmatrix} -m \\ n \end{pmatrix} = (-1)^n \begin{pmatrix} m+n-1 \\ n \end{pmatrix} \quad \forall m \in \mathbb{R}^+, \, \forall n \in \mathbb{Z}$$